Cernunnos influences human immunoglobulin class switch recombination and may be associated with B cell lymphomagenesis

نویسندگان

  • Likun Du
  • Roujun Peng
  • Andrea Björkman
  • Noel Filipe de Miranda
  • Cornelia Rosner
  • Ashwin Kotnis
  • Mattias Berglund
  • Chonghai Liu
  • Richard Rosenquist
  • Gunilla Enblad
  • Christer Sundström
  • Mohammad Hojjat-Farsangi
  • Hodjattallah Rabbani
  • Manuel R. Teixeira
  • Patrick Revy
  • Anne Durandy
  • Yixin Zeng
  • Andrew R. Gennery
  • Jean-Pierre de Villartay
  • Qiang Pan-Hammarström
چکیده

Cernunnos is involved in the nonhomologous end-joining (NHEJ) process during DNA double-strand break (DSB) repair. Here, we studied immunoglobulin (Ig) class switch recombination (CSR), a physiological process which relies on proper repair of the DSBs, in B cells from Cernunnos-deficient patients. The pattern of in vivo generated CSR junctions is altered in these cells, with unusually long microhomologies and a lack of direct end-joining. The CSR junctions from Cernunnos-deficient patients largely resemble those from patients lacking DNA ligase IV, Artemis, or ATM, suggesting that these factors are involved in the same end-joining pathway during CSR. By screening 269 mature B cell lymphoma biopsies, we also identified a somatic missense Cernunnos mutation in a diffuse large B cell lymphoma sample. This mutation has a dominant-negative effect on joining of a subset of DNA ends in an in vitro NHEJ assay. Translocations involving both Ig heavy chain loci and clonal-like, dynamic IgA switching activities were observed in this tumor. Collectively, our results suggest a link between defects in the Cernunnos-dependent NHEJ pathway and aberrant CSR or switch translocations during the development of B cell malignancies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The IgH 3′ regulatory region influences lymphomagenesis in Igλ-Myc mice

The IgH 3'regulatory region (3'RR), encompassing the four transcriptional enhancers hs3a-hs1,2-hs3b-hs4, has a key role on class switch recombination, somatic hypermutation, IgH transcription and B-cell fate. In plasma cells, transcribed IgH and IgL loci often colocalized in transcription factories and an IgL transcription defect might translate into lowered IgH transcription. We explored wheth...

متن کامل

Activation-induced cytidine deaminase (AID) promotes B cell lymphomagenesis in Emu-cmyc transgenic mice.

Activation-induced cytidine deaminase (AID), which is essential to both class switch recombination and somatic hypermutation of the Ig gene, is expressed in many types of human B cell lymphoma/leukemia. AID is a potent mutator because it is involved in DNA breakage not only of Ig but also of other genes, including proto-oncogenes. Recent studies suggest that AID is required for chromosomal tran...

متن کامل

Lymphocyte-specific compensation for XLF/cernunnos end-joining functions in V(D)J recombination.

Mutations in XLF/Cernunnos (XLF) cause lymphocytopenia in humans, and various studies suggest an XLF role in classical nonhomologous end joining (C-NHEJ). We now find that XLF-deficient mouse embryonic fibroblasts are ionizing radiation (IR) sensitive and severely impaired for ability to support V(D)J recombination. Yet mature lymphocyte numbers in XLF-deficient mice are only modestly decreased...

متن کامل

Epigenetic Function of Activation-Induced Cytidine Deaminase and Its Link to Lymphomagenesis

Activation-induced cytidine deaminase (AID) is essential for somatic hypermutation and class switch recombination of immunoglobulin (Ig) genes during B cell maturation and immune response. Expression of AID is tightly regulated due to its mutagenic and recombinogenic potential, which is known to target not only Ig genes, but also non-Ig genes, contributing to lymphomagenesis. In recent years, a...

متن کامل

Aberrant recombination and repair during immunoglobulin class switching in BRCA1-deficient human B cells.

Breast cancer type 1 susceptibility protein (BRCA1) has a multitude of functions that contribute to genome integrity and tumor suppression. Its participation in the repair of DNA double-strand breaks (DSBs) during homologous recombination (HR) is well recognized, whereas its involvement in the second major DSB repair pathway, nonhomologous end-joining (NHEJ), remains controversial. Here we have...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 209  شماره 

صفحات  -

تاریخ انتشار 2012